这是首次拍摄到的单个蛋白质照片

多亏了石墨烯,一切才成为可能

人体内有数千种不同的蛋白质。每种蛋白质都有独特的形状,这决定了它的功能。然而,科学家们很难捕捉到单个蛋白质的图像——高功率成像工具会摧毁脆弱的蛋白质,因此研究人员通常一次性拍摄数百万个蛋白质的晶体结构照片。 resulting images are often blurry, and some proteins can’t be photographed because they don’t form crystals. Now a team has used wonder-material graphene to take the first photos of individual proteins, according to a study published recently on arXiv and reported by New Scientist

To capture an image of a single protein, the researchers spray a mixture of proteins in solution onto a thin sheet of graphene. They then used a low-energy holography electron microscope, which creates an image by bouncing a beam of electrons off the proteins, then recording how those electrons interact with a pattern of other electrons. That low energy ensured that the protein wasn’t obliterated while the researchers were taking its photo. Using a computer, the researchers used the hologram image to reconstruct the protein’s original structure.

Jean-Nicolas Longchamp et al, 2015, arXiv

The researchers tried this imaging technique with a few proteins with well-known structures: hemoglobin (the protein that carries oxygen in red blood cells), bovine serum albumin (a cow protein commonly used in lab experiments), and cytochrome c (proteins used to transfer electrons in the body). They compared the resulting images to those taken from other imaging techniques and found that their photos had less blurring. The researchers next hope to take photos of proteins that have never before been seen on their own. If scientists better understand proteins’ structure, they may be able to figure out what goes wrong in diseases linked to misfolded proteins, such as Alzheimer’s, Parkinson’s, and Huntington’s.

 

更多优惠、评测和购买指南

 
Alex 是一位居住在纽约市的科学作家。她曾为《大西洋月刊》、《Motherboard》、《Audubon Magazine》、《The Verge》和《Fast Company》等杂志撰稿。当她不沉迷于科学时,Alex 喜欢旅行、徒步、瑜伽,以及(尝试)烹饪新食物。

© .